常温常压下,氢以气体状态存在。高压下,氢结晶为固体。而超高压下固体氢的原子排列方式一直是未解之谜。
5月14日,国际权威学术期刊《自然》发表一项重大突破:由中国科学家领衔的国际团队用X射线纳米探针首次“看见”固体氢的复杂晶体结构。这是目前世界上固体氢的最精细结构。
压力的升高,使氢的晶体结构趋于复杂。“气体氢的分子随机散落在空间中。随压力升高(5GPa),氢分子像跳棋子一样层层排列,形成固体氢。压力再升高(212-245GPa),一部分氢原子会形成蜂窝状排列,于是固体氢呈现更复杂的结构:跳棋子和蜂窝间隔着层层叠起。”论文第一作者、北京高压科学研究中心研究员吉诚说。
为什么要“看见”固体氢?“金属氢具有极高的能量密度,是氢核聚变的理想原料,应用潜力、战略意义巨大,被称为‘高压物理的圣杯’。想要找到金属氢,研究固体氢是必经之路。”高压物理学家、中科院外籍院士毛河光说。
如果说金属氢是“圣杯”,那么高压下固体氢结构就好比“圣杯”的杯座。此次中国科学家率先“看到”精细结构的固体氢,恰处于气体氢变成固体氢之后、金属氢形成之前的高压状态。
毛河光介绍,诺贝尔物理学奖得主维格纳等人1935年预测,氢在极高压下会变为金属氢。后有物理学家提出,让氢得以金属化的压力高达500GPa——这相当于一架停在针尖上的巨型喷气式飞机对针尖施加的力。
“观测金属氢难度极大,因为氢金属化所需的超高压条件极为苛刻。我们将两颗超锋利的金刚石尖对尖,挤压中间的氢分子。用高亮度的X光穿透金刚石照射在高压氢上,X光与高压氢相互作用,就好比给固体氢‘拍照片’,得以窥见原子如何排列。”吉诚说。
“晶体结构的研究应是金属氢研究的核心。因为金属氢的奇异特性取决于其特殊的原子排列。”毛河光说,这一发现对理解金属氢的形成路径与机制提供了关键依据。
常温常压下,氢以气体状态存在。高压下,氢结晶为固体。而超高压下固体氢的原子排列方式一直是未解之谜。
5月14日,国际权威学术期刊《自然》发表一项重大突破:由中国科学家领衔的国际团队用X射线纳米探针首次“看见”固体氢的复杂晶体结构。这是目前世界上固体氢的最精细结构。
压力的升高,使氢的晶体结构趋于复杂。“气体氢的分子随机散落在空间中。随压力升高(5GPa),氢分子像跳棋子一样层层排列,形成固体氢。压力再升高(212-245GPa),一部分氢原子会形成蜂窝状排列,于是固体氢呈现更复杂的结构:跳棋子和蜂窝间隔着层层叠起。”论文第一作者、北京高压科学研究中心研究员吉诚说。
为什么要“看见”固体氢?“金属氢具有极高的能量密度,是氢核聚变的理想原料,应用潜力、战略意义巨大,被称为‘高压物理的圣杯’。想要找到金属氢,研究固体氢是必经之路。”高压物理学家、中科院外籍院士毛河光说。
如果说金属氢是“圣杯”,那么高压下固体氢结构就好比“圣杯”的杯座。此次中国科学家率先“看到”精细结构的固体氢,恰处于气体氢变成固体氢之后、金属氢形成之前的高压状态。
毛河光介绍,诺贝尔物理学奖得主维格纳等人1935年预测,氢在极高压下会变为金属氢。后有物理学家提出,让氢得以金属化的压力高达500GPa——这相当于一架停在针尖上的巨型喷气式飞机对针尖施加的力。
“观测金属氢难度极大,因为氢金属化所需的超高压条件极为苛刻。我们将两颗超锋利的金刚石尖对尖,挤压中间的氢分子。用高亮度的X光穿透金刚石照射在高压氢上,X光与高压氢相互作用,就好比给固体氢‘拍照片’,得以窥见原子如何排列。”吉诚说。
“晶体结构的研究应是金属氢研究的核心。因为金属氢的奇异特性取决于其特殊的原子排列。”毛河光说,这一发现对理解金属氢的形成路径与机制提供了关键依据。
本文链接:http://www.vanbs.com/v-146-17.html我国科学家率先“看见”固体氢的最精细结构
相关文章:
春天的优美描写的句子05-23
三年级语文课改随笔07-17
大专毕业生自我鉴07-07
电厂实习总结07-07
学生个人保证书10-19
感受家乡变化实践心得08-25
高中新生个人军训心得02-16
读《童年》有感01-12
节约粮食校园广播稿09-12
珍惜时间的三分钟英语演讲稿11-22
骆驼祥子的读书笔记07-23
介绍微波炉的说明文07-23
安徽大学在省属211中属末流吗12-05
浙江2024高考化学赋分表 2024年各省高考状元盘点09-07
澳门通用什么语 澳门大学 用什么语授课09-04
歌颂祖国的诗歌小学生08-12