据最新一期《自然·生物医学工程》杂志报道,日本京都大学研究团队开发出一种能同时模拟肺部近端气道与远端肺泡的新型“肺芯片”系统,有望更精确地研究呼吸道病毒的感染机制。
呼吸道病毒感染曾多次引发全球性大流行,给医疗系统带来沉重负担。这类病毒会对肺部造成严重损伤,特别是肺部的近端区域(气道)和远端区域(肺泡)。由于肺部不同区域对感染的反应存在差异且机制复杂,传统的动物模型或简单的体外系统难以准确复现这一过程。
为解决上述问题,日本研究团队开发出一款微型生理系统。他们通过诱导多能干细胞(iPSC)技术,诱导分化出具有功能性的肺上皮细胞,再配合类器官工程与微流控平台,重建了人体肺部气道与肺泡的三维结构与微环境。
研究团队利用iPSC构建的“肺芯片”能模拟气道和肺泡在病毒感染时的不同反应,且细胞来源一致,有效减少了个体差异带来的干扰。这一成果为研究组织与病毒特异性的疾病机制提供了更精准的平台,也有助于新药的评估和筛选。
这项研究成果不仅适用于肺部模型,也为其他人体器官及多器官系统的构建提供了重要参考,有助揭示器官间的相互作用机制。微型生理系统与iPSC技术的结合,将为复杂疾病模型的开发带来全新思路。
据最新一期《自然·生物医学工程》杂志报道,日本京都大学研究团队开发出一种能同时模拟肺部近端气道与远端肺泡的新型“肺芯片”系统,有望更精确地研究呼吸道病毒的感染机制。
呼吸道病毒感染曾多次引发全球性大流行,给医疗系统带来沉重负担。这类病毒会对肺部造成严重损伤,特别是肺部的近端区域(气道)和远端区域(肺泡)。由于肺部不同区域对感染的反应存在差异且机制复杂,传统的动物模型或简单的体外系统难以准确复现这一过程。
为解决上述问题,日本研究团队开发出一款微型生理系统。他们通过诱导多能干细胞(iPSC)技术,诱导分化出具有功能性的肺上皮细胞,再配合类器官工程与微流控平台,重建了人体肺部气道与肺泡的三维结构与微环境。
研究团队利用iPSC构建的“肺芯片”能模拟气道和肺泡在病毒感染时的不同反应,且细胞来源一致,有效减少了个体差异带来的干扰。这一成果为研究组织与病毒特异性的疾病机制提供了更精准的平台,也有助于新药的评估和筛选。
这项研究成果不仅适用于肺部模型,也为其他人体器官及多器官系统的构建提供了重要参考,有助揭示器官间的相互作用机制。微型生理系统与iPSC技术的结合,将为复杂疾病模型的开发带来全新思路。
本文链接:http://www.vanbs.com/v-146-3961.html“肺芯片”有望模拟呼吸道病毒感染过程
相关文章:
六月适合发朋友圈的句子06-02
实用的优美的晚安问候语10-05
学生资助工作总结01-21
广电网络维修员个人述职报告11-19
考试中心工作总结09-27
最新新员工试用期工作总结50字(12篇)09-18
物业安全工作承诺书08-04
夜班睡岗检讨书08-16
学生会竞选演讲稿01-30
少年风采作文900字01-21
读《盗墓笔记》有感12-31
议论文最新11-09
五年级国庆节作文10-26
2025年8月海南证券从业资格考试时间及科目:8月16日08-04
2025上半年山西教资成绩查询入口已开通 附合格标准05-08
山西大学软件工程有校招吗11-22
酒类经销商的典礼颁奖词07-25