瑞士洛桑联邦理工学院(EPFL)和美国哈佛大学科学家合作,研制出一款新型集成芯片,实现了太赫兹波与光信号的相互转换。相关研究成果发表于最新一期《自然·通讯》杂志,有助推动超高速通信、测距、高分辨光谱以及超快计算等领域的发展。
太赫兹波与光在频率范围和产生机制上存在显著差异。太赫兹波指频率在0.1太赫兹(1012赫兹)至10太赫兹之间的电磁波,在电磁波谱中位于微波(用于WiFi等电信技术)与红外线(用于激光器和光纤)之间。光是指电磁波谱中的可见光部分。虽然太赫兹波在6G通信、无损检测、医疗成像等领域展现出巨大潜力,但如何让其与现有光通信技术无缝衔接,一直是困扰科学家的难题。
2023年,该研究团队曾利用超薄铌酸锂光子芯片,实现了激光调控太赫兹波的突破。如今,他们更进一步:新型集成芯片就像为两种电磁波打造了“双语翻译器”,不仅能让光“说”出太赫兹波,还能把太赫兹波“译”回光信号。这种双向转换能力,标志着太赫兹—光融合技术迈上新台阶。
该芯片的创新点在于,研究团队在此前研制出的铌酸锂芯片上,精巧设计了两种微米级结构:形同微型天线的传输线负责引导太赫兹波;相邻的光波导则像光纤般约束光波。二者“比邻而居”,实现了太赫兹波和光以最小的能量损失相互作用和转换。这种设计犹如在芯片上建造了“立体交通网”,让不同频段的电磁波各行其道又相互连通。
该芯片可用于开发太赫兹基雷达,实现毫米级误差测距。此外,由于“体型”小巧,还可与激光器、光调制器和探测器等光子设备兼容。进一步缩小该芯片尺寸后,可无缝集成到自动驾驶汽车中使用的下一代通信和测距系统,也有望在6G高速通信领域发挥重要作用。
瑞士洛桑联邦理工学院(EPFL)和美国哈佛大学科学家合作,研制出一款新型集成芯片,实现了太赫兹波与光信号的相互转换。相关研究成果发表于最新一期《自然·通讯》杂志,有助推动超高速通信、测距、高分辨光谱以及超快计算等领域的发展。
太赫兹波与光在频率范围和产生机制上存在显著差异。太赫兹波指频率在0.1太赫兹(1012赫兹)至10太赫兹之间的电磁波,在电磁波谱中位于微波(用于WiFi等电信技术)与红外线(用于激光器和光纤)之间。光是指电磁波谱中的可见光部分。虽然太赫兹波在6G通信、无损检测、医疗成像等领域展现出巨大潜力,但如何让其与现有光通信技术无缝衔接,一直是困扰科学家的难题。
2023年,该研究团队曾利用超薄铌酸锂光子芯片,实现了激光调控太赫兹波的突破。如今,他们更进一步:新型集成芯片就像为两种电磁波打造了“双语翻译器”,不仅能让光“说”出太赫兹波,还能把太赫兹波“译”回光信号。这种双向转换能力,标志着太赫兹—光融合技术迈上新台阶。
该芯片的创新点在于,研究团队在此前研制出的铌酸锂芯片上,精巧设计了两种微米级结构:形同微型天线的传输线负责引导太赫兹波;相邻的光波导则像光纤般约束光波。二者“比邻而居”,实现了太赫兹波和光以最小的能量损失相互作用和转换。这种设计犹如在芯片上建造了“立体交通网”,让不同频段的电磁波各行其道又相互连通。
该芯片可用于开发太赫兹基雷达,实现毫米级误差测距。此外,由于“体型”小巧,还可与激光器、光调制器和探测器等光子设备兼容。进一步缩小该芯片尺寸后,可无缝集成到自动驾驶汽车中使用的下一代通信和测距系统,也有望在6G高速通信领域发挥重要作用。
本文链接:http://www.vanbs.com/v-146-4663.html混合芯片实现太赫兹波与光信号双向转换
相关文章:
人生的励志名言名句摘抄11-09
励志早安语录08-08
见习期工作总结简短12-14
毕业生实习实践心得范文03-27
店长竞选演讲稿12-28
学生会大会新闻稿10-26
致实心球运动员的加油稿10-11
不忘初心初中作文500字11-19
初一作文批改评语11-03
十五从军征改写作文10-26
逛商场小学生作文10-19
文科高考成绩往年对比表 考试网:广东高考 一本文科580理科56809-21
元宵节灯谜及答案简单02-19
投顾业务管理办法范文8篇08-15
距离远的爱情文案短句08-10
大暑朋友圈文案07-25
冲浪纸飞机的折法07-21